If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+4z=22=0
We move all terms to the left:
z^2+4z-(22)=0
a = 1; b = 4; c = -22;
Δ = b2-4ac
Δ = 42-4·1·(-22)
Δ = 104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{104}=\sqrt{4*26}=\sqrt{4}*\sqrt{26}=2\sqrt{26}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{26}}{2*1}=\frac{-4-2\sqrt{26}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{26}}{2*1}=\frac{-4+2\sqrt{26}}{2} $
| 28=3y-1 | | 3x+8=-x-12 | | 6(3+x)=(1+x) | | 4.3=y/3 | | 13h-5h=16 | | -2=x–1 | | 2(v-5)-6=-3(-6v+2)-v | | 4x-3=2x5 | | 4x-54=2x+22 | | 4x-3=2x(5 | | 5x+14-21x=23+x-9 | | 4x÷2=256 | | 4(2x+6)=-45+61 | | 7x+3x+20=80 | | 3-2g=-9 | | -88=-8(3-8n) | | 1=r/4+2 | | 2(4x+8)=-29+37 | | -7u-19=3(u-3) | | 2x+3x=^ | | -1=-3+w/2 | | -7u+5(u-4)=-22 | | -144=6(3a-6) | | 3+9n=165 | | 90=62x | | 18x-9x+9=18 | | 2x(4x+5)=7 | | -6n+16=-2n-8 | | 180=62x | | 11v=4v+63 | | -11=-1-5m | | 8x+5=3x+45 |